Differential pulse anodic stripping voltammetry for the detection of Cd²⁺and Pb²⁺in sediment samples using BI/RGO modified glassy carbon electrode

¹S. Meenakshi, ²M. Merlin, K.Pandian*

^{1, *}Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai-600025 ²Department of Chemistry, Jeppiaar Engineering College, Chennai-600119. Corresponding Author: E.Mail: drmerchem@gmail.com

ABSTRACT

We have demonstrated an anodic stripping pulse voltammetry method for simultaneous detection of Cd^{2+} and Pb^{2+} present in sediment samples using bismuth deposited graphene film electrode. The surface modification was accomplished by electrochemical deposition of Bi/rGOby potential scanning between the predetermined potential ranges from 0 to -2.0 V vs Ag/AgCl_{sat}. The calibration plots were constructed by peak current values against concentration of Cd^{2+} and Pb^{2+} . The detection limit was found to be 0.025 nM and 0.012 nM for Cd^{2+} and Pb^{2+} , respectively.

Key words: Differential pulse stripping voltammetry, graphene oxide, cadmium, lead and sediment samples.

INTRODUCTION

Heavy metals are toxic and hazardous pollutants in environmentdue to their non-biodegradability and persistence, which cancause serious threat to living organisms.For example, the accumulation of Pb or Cd ion in human body exhibits severe deleterious effects on neurobehavioraldevelopment in kids, increases blood pressure, and causes kidney injury and anemia. The development of a sufficiently simple, sensitive, selective and reproducibleanalytical method for their determination at trace levels isnecessary. Many conventional methods such as atomic absorption spectrometry, atomic fluorescence spectrometry and inductively coupled plasma mass spectroscopy were utilized for determination of heavy metals. However, these methods have some limitation like tedious sample preparation procedure, high cost and serious interference effect. Electrochemical stripping voltammetryhas been widely used as a powerful technique for determination of trace metal ions attributable to its distinctive ability to pre-concentrate target metal ions throughout the accumulation step and a lower detection limit. Various graphite electrodes were used for anodic stripping voltammetry (ASV) to measure concentration of trace elements. The attractive stripping behavior of bismuth modified electrodes is recent interest as the ability of bismuth to form a 'fusible' alloy with trace heavy metals during pre-concentration step. However, it has been shown that within the presence of Pb ion, peak currents of Cd ion decreased by half, as compared to individual Cd ion analysis. Since the environmental sample contains several metal species sensitivity detection is a concern, bismuth deposited graphene modified electrode is selected.

In this study, bismuth deposited graphene oxide (Bi/rGO) based electrode was fabricated for simultaneous determination of Pb^{2+} and Cd^{2+} by differential pulse stripping voltammetry from predeposited bismuth modified graphene electrochemically. An enhanced sensitivity and lower detection limit can be achieved by this method.

MATERIALS AND METHODS

Chemicals: All chemicals were received from commercial sources. Deionized water was used for the preparation of all electrolytes and stock solutions. All the experiments were performed at nitrogen atmosphere.

Instrumental method: Voltammetric measurements were carried out with a Gamry model 330 Electrochemical Analyzer USA. A three electrode systemwas completed by a bismuth deposited graphene modified GCE as a working electrode, platinumwire as an auxiliary electrode and Ag/AgCl electrode as a referenceelectrode. All solutions were deoxygenated with high-puritynitrogen for 5 min prior to each experiment and kept under nitrogenatmosphere during the measurements.

Electrode Modification procedure: The electrodeposition of bismuth ontothe graphene oxide was accomplished by using a cyclic voltammetry method. Briefly, graphene oxide was electrodeposited by potential range at 0 to -2.0 V Vs. Ag/AgCl for 10 cycles in 0.1 M sodium nitrate and 0.1 M acetic acid (pH 4.5) as a supporting electrolyte containing $500 \square g/l$ bismuth nitrate and graphene oxide (100 mg/ml) under nitrogen gas atmosphere. The modified electrode subsequently characterized by usingcyclic voltammetry (CV) and differentialpulse stripping voltammetry (DPSV).

Sample preparation procedure: 100 mg of finely powdered core samples was taken in a Teflon beaker. Initially 3 ml of conc. HF and then 1 ml conc. HNO₃ was added. The sample was digested by placing on a hot plate at 100°C. Finally the wet samples were dispersed in 1M HNO₃ and then makeup to 100 ml.

www.jchps.com Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 RESULTS AND DISCUSSION

Electrochemical deposition of Bi deposited rGO/GCE: A variety of modified electrode systems have been reported on simultaneous electrochemical detection of Cd^{2+} and Pb^{2+} present in water and sediment samples. Here, we demonstrate to use bismuth deposited reduced graphene oxide modified GCE for simultaneous determination of both Cd^{2+} and Pb^{2+} in sediment samples. The electrochemical performancehas beenevaluatedforthedetermination of Cd^{2+} and Pb^{2+} in mg L⁻¹ concentrationrangesusing cyclic voltammetry and DPSV methods.Figure 1 shows the cyclic voltammogram of Bi/rGO/GCE in the presence of 0.1 M acetate buffer solution (pH 4.5) at a scan rate 50 mV/s.

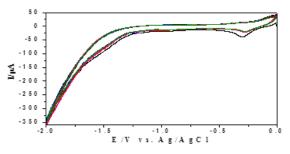
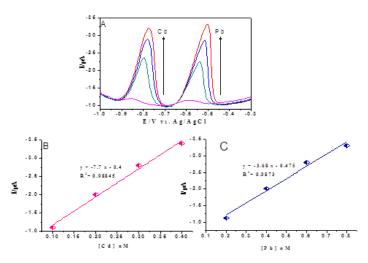



Fig. 1.Cyclic voltammogram of bismuth deposited graphene oxide modified GCE in 0.1 M acetate buffer (pH 4.5) at a scan 50 mV/s

To deposit GO on GCE, the potential scanning between 0 to -2.0 V vs Ag/AgCl in presence of 100 mg/ml GO. For the simultaneous deposition of Bi deposited rGO, the same potential range was used in presence of 100 mg/ml of GO and 1mM Bi(NO₃)₃ in acetate buffer medium (pH 4.5). A small peak at 0.2 is due to the reduction of bismuth on graphene oxide surface. The decrease of peak current values was noted in the subsequent cycles. The decreasing of peak current is due to the deposition of graphene oxide on GCE.

Simultaneous determination of Pb (II) and Cd (II): Figure 2A shows DPSV ofCd²⁺ and Pb²⁺in 0.1M acetate buffer (pH 4.5) as the supporting electrolyte medium using Bi/rGO modified glassy carbon electrode.

Fig. 2.A) Differential pulse stripping voltammogram for different concentrations of Cd²⁺ and Pb²⁺ at the rGO/Bi/GCE in 0.1 M acetate buffer (pH 4.5). at a scan of 50 mV/s. B) Linear plot of peak current vs. concentration. (B) and (C) the corresponding calibration curves of Cd²⁺ and Pb²⁺, respectively

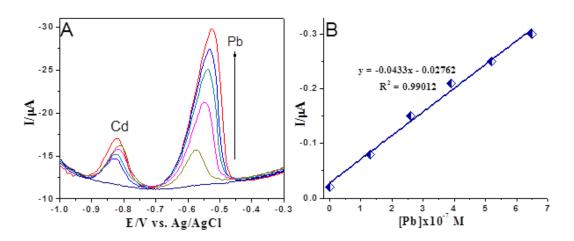

Deposition potential was optimized at -1.1 Vfor 100s to pre-concentrate of both Pb²⁺ and Cd²⁺ present in the buffer solution under constant stirring to enrich the deposition of metal ions at the electrode surface. After a short equilibration time, the deposited ions were quantified by performing anodic stripping pulse voltammetry experiment in the same reaction medium. The same experiment was repeated many times using different concentration of the added Cd and Pb ions. For the each addition of Cd and Pb ions, a freshly prepared Bi/rGO/GCE was used. The resulting peak current values were recorded and quantified separately Cd and Pb ions. A linear calibration graph was obtained for both Cd and Pb ions concentration against peak current values. The corresponding calibration plots are showninFig. 2B and 2C.

Figure 2depicts the stripping response of Bi/rGO/GCE without any interference while simultaneously increasing concentrations of both metal ions from 0.01 mM to 0.1 mM. Results show that the stripping peak current increased linearly with concentration in the ranging from 0.1×10^{-7} M to 4×10^{-7} M. In the case of Cd²⁺(Fig. 2B), the linear regression equation is $y = -7.7 \times -0.47$ with the correlation coefficient of 0.98848 (R²) and sensitivity of

April-June 2015

www.jchps.com Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115 0.025nM. On the other hand Pb^{2+} (Fig. 2C), the linear regression equation is y = -3.68 x - 0.475 with the correlation coefficient of 0.9873 (R²) and sensitivity of 0.012 nM. Repetitive measurements of Cd²⁺ and Pb²⁺ with different concentrations (in the linear range) showed good reproducibility with the relative standard deviations less than 4.1% and 3.9%, respectively (n = 10). Lower detectionlimits for both target metal ions could be expected by prolonging the detection time.

Selective detection of Pb^{2+} in presence of Cd^{2+} : For the selective detection of individual Cd and Pb ions present in the samples, the standard addition method was carried out. In this method by keeping the concentration of Cd ion is constant and then subsequent addition of a known concentration of Pb ion (Fig. 3A). There is alinear graph is obtained overtheconcentrationranging from 1 x 10⁻⁸ to 7 x 10⁻⁷ Musing RGO/Bi/GCE. The correlation coefficient of Pb (II) was found to be 0.99012 with a detection limit of 0.2 nM (Fig. 3B).

Fig. 3.A) DPSV of graphene oxide deposited bismuth nitrate modified GCE in different concentration of Pb²⁺ in 0.1 M acetate buffer (pH 4.5) at a scan of 50 mV/s. B) Linear plot of peak current vs. concentration

Selective Detection of Cd²⁺ in presence of Pb²⁺

Figure 4A shows DPSV ofCd²⁺ and Pb²⁺in 0.1M acetate buffer at pH 4.5asthesupportingelectrolytemedium using Bi/rGO/GCE. Deposition potential was optimized at -1.1V for 100s to pre-concentration Cd²⁺ in presence of Pb²⁺. The resulting calibrationplots Cd²⁺is showninFig. 4B. The calibration plot exhibits a linear relationship overtheconcentrationranges from 0.1 x 10⁻⁷ M to 6.6 x 10⁻⁷ Musing Bi/rGO/GCE. The correlation coefficient of Cd (II) was found to be 0.9975 and the calculated detection limit was 0.1nM.

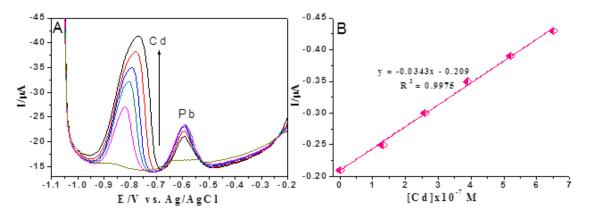


Fig.4. A) Differential pulse stripping voltammetry of graphene oxide deposited bismuth nitrate modified GCE in different concentration of Cd²⁺ in 0.1 M acetate buffer (pH 4.5) at a scan of 50 mV/s. B) Linear plot of peak current vs. concentration

CONCLUSION

Hence the present method can be exploited for the detection of both simultaneous and individual elemental concentration of metal pollutants like Cd^{2+} and Pb^{2+} present in sediment samples. Calibration plots for the simultaneous determination of Cd^{2+} and Pb^{2+} at the developed rGO/Bi/GCE were obtained by differential pulse stripping voltammetry under the optimal conditions described above. It can be seen that Bi/rGO/GCE possesses

April-June 2015

www.jchps.com Journal of Chemical and Pharmaceutical Sciences ISSN: 0974-2115

improved or comparable performance for the simultaneous determination of Cd^{2+} and Pb^{2+} , nevertheless the present modified electrodes system are inexpensive and easy to be fabricated.

ACKNOWLEDGEMENT: The authors are grateful to UGC-CPEPA programme, New Delhi for providing financial assistance to carry out a part of the work.

REFERENCES

C. Huang, B. Hu, Silica-coated magnetic nanoparticles modified with γ -mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry, Spectrochimica Acta Part B, 63, 2008, 437–444.

G. H. Hwang, W. K. Han, J. S. Park, S. G. Kang, An electrochemical sensor based on the reduction of screenprintedbismuth oxide for the determination of trace lead and cadmium, Sensors and Actuators B, 135, 2008, 309– 316.

G. H. Hwang, W. K. Han, J. S. Park, S. G. Kang, Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode, Talanta, 76, 2008, 301–308.

H. Choudhury, A.Mudipalli, Potential considerations and concerns in the risk characterization for the interaction profiles of metals, Indian J. Med. Res., 128, 2008, 462-483.

I. Palchetti, S. Laschi, M. Mascini, Miniaturized stripping-based carbon modified sensor for in field analysis of heavy metals, Analytica Chimica Acta, 530, 2005, 61–67.

I. Rutyna, M. Korolczuk, Determination of lead and cadmium by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps, Sensors and Actuators B, 204, 2014, 136–141

J. Ping, Y. Wang, J. Wu, Y. Ying, Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk, Food Chemistry, 151, 2014, 65–71.

J.Xue, S. Gong, X. Wang, Y. Fan, X. Li, Determination of Hg, As, Pb, and Cd in Orchard Soils by Sequential Injection Vapor Generation Atomic Fluorescence Spectrometry, Analytical Letters, 45, 2012, 2257–2268.

R. Guell, G. Aragaya, C. Fontasc, E. Anticoc, A. Merkoc, Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis, AnalyticaChimicaActa, 627, 2008, 219–224.

Y.Kojuncu, J. M.Bundalevska, U. Ay, K.Cundeva, T.Stafilov, G.Akcin, Atomic Absorption Spectrometry Determination of Cd, Cu, Fe, Ni, Pb, Zn, and Tl Traces in Seawater Following Flotation Separation, Separation Science and Technology, 39, 2004, 2751–2765.